Congratulations to Spandan Madan on his NeuroAI 2024 work!

Spandan Madan

10/10/2024

Improving out-of-distribution generalization by mimicking the human visual diet

Spandan’s paper was accepted at NeuroAI @ NeurIPS 2024

In this work Spandan shows that a careful account of the visual input statistics that humans encounter during learning can help improve machine learning algorithms.

Bono, S., Madan, S., Grover, I., Yasueda, M., Breazeal, C., Pfister, H., & Kreiman, G. (2025). The Indoor-Training Effect: unexpected gains from distribution shifts in the transition function. AAAI. https://drive.google.com/file/d/1WSpHklye2Edkm0c_SBPltVCoM081Pj7l/view?usp=sharing
Madan, S., Li, Y., Zhang, M., Pfister, H., & Kreiman, G. (2024). Improving generalization by mimicking the human visual diet. BioRxiv, 2206.07802. https://drive.google.com/file/d/17NhH3cw-cYB9pM2bOdnrkSUNlKR_KbWt/view?usp=sharing
Madan, S., Xiao, W., Cao, M., Pfister, H., Livingstone, M., & Kreiman, G. (2024). Benchmarking out-of-distribution generalization capabilities of DNN-based encoding models for the ventral visual cortex. NeurIPS. https://drive.google.com/file/d/1JlzUPI_5BQ1OmPj2e67ZXdv-YJorBWHZ/view?usp=sharing
Madan, S. (2024). Out-of-distribution generalization in biological and artificial intelligence [Harvard University]. https://drive.google.com/file/d/19_azuONFThFBpG4yxAr5KB_e0WBKUeug/view?usp=sharing
Zhang, M., Dellaferrera, G., Sikarwar, A., Armendariz, M., Mudrik, N., Agrawal, P., Madan, S., Barbu, A., Yang, H., Kumar, T., Sadwani, M., Dellaferrera, S., Pizzochero, M., Pfister, H., & Kreiman, G. (2022). Human or Machine? Turing Tests for Vision and Language. ArXiv, 2211.13087. https://drive.google.com/file/d/1WhrlNJP9kxS3YeCJYEjbvuz6nRd0lNmG/view?usp=sharing
Bomatter, P., Zhang, M., Karev, D., Madan, S., Tseng, C., & Kreiman, G. (2021). When pigs fly: contextual reasoning in synthetic and natural scenes. International Conference on Computer Vision (ICCV). https://drive.google.com/file/d/11nUVQHh4vucGpmokq-RD0Fl9fJOAYFWu/view?usp=sharing