Publications

Looking for theses from the Kreiman lab?

Click here

2024

Ferrante, O., Gorska, U., Henin, S., Hirschhorn, R., Khalaf, A., Lepauvre, A., Liu, L., Richter, D., Vidal, Y., Bonacchi, N., Brown, T., Sripad, P., Armendariz, M., Bendtz, K., Ghafari, T., Hetenyi, D., Jeschke, J., Kozma, C., Mazumder, D., … Melloni, L. (2024). An adversarial collaboration to critically evaluate theories of consciousness. Nature, In Press. https://drive.google.com/file/d/1HfyMaLGNHirBf5J9tZwI7VuanJzzIzpS/view?usp=sharing
Bono, S., Madan, S., Grover, I., Yasueda, M., Breazeal, C., Pfister, H., & Kreiman, G. (2024). Look around! Unexpecetd gains from training on environments in the vicinity of the target. ArXiv, 2401.15856. https://drive.google.com/file/d/1WSpHklye2Edkm0c_SBPltVCoM081Pj7l/view?usp=sharing
Madan, S., Li, Y., Zhang, M., Pfister, H., & Kreiman, G. (2024). Improving generalization by mimicking the human visual diet. BioRxiv, 2206.07802. https://drive.google.com/file/d/17NhH3cw-cYB9pM2bOdnrkSUNlKR_KbWt/view?usp=sharing
Madan, S., Xiao, W., Cao, M., Pfister, H., Livingstone, M., & Kreiman, G. (2024). Benchmarking out-of-distribution generalization capabilities of DNN-based encoding models for the ventral visual cortex. NeurIPS. https://drive.google.com/file/d/1JlzUPI_5BQ1OmPj2e67ZXdv-YJorBWHZ/view?usp=sharing
Zheng, J., Yebra, M., Schjetnan, A., Mosher, C., Kalia, A., Chung, J., Reed, C., Valiante, T., Mamelak, A., Kreiman, G., & Rutishauser, U. (2024). Hippocampal theta phase precession supports memory formation and retrieval of naturalistic experience in humans. Nature Human Behavior, In Press. https://drive.google.com/file/d/1KnwCnhJWfI7CI3p9qp4jNEYom9KYCFnf/view?usp=sharing
Wang, C., Yaari, A., Singh, A., Subramaniam, V., Rosenfarb, D., Misra, P., Madsen, J., Stone, S., Kreiman, G., Katz, B., Cases, I., & Barbu, A. (2024). Brain treebank: Large-scale intracranial recordings from naturalistic language stimuli. NeurIPS. https://drive.google.com/file/d/1EeH0El2umcbRAYnKymI-X34KjssfJiGR/view?usp=sharing
Li, C., Brenner, J. W., Boesky, A., Ramanathan, S., & Kreiman, G. (2024). Neuron-level prediction and noise can implement flexible reward-seeking behavior. BioRxiv, 2024.05.22.595306. https://www.biorxiv.org/content/biorxiv/early/2024/05/22/2024.05.22.595306.full.pdf
Misra, P., Shih, Y., Yu, H., Weisholtz, D., Madsen, J., Sceillig, S., & Kreiman, G. (2024). Invariant neural representation of parts of speech in the human brain. BioRxiv, 2024.01.15.575788. https://drive.google.com/file/d/1Vzdm4Uknpn4Ry77A0JecDZEyQE8rqOHF/view?usp=sharing
Subramaniam, V., Wang, C., Barbu, A., Kreiman, G., & Katz, B. (2024). Revealing vision-language integration in the brain with multimodal networks. International Conference on Machine Learning (ICML). https://drive.google.com/file/d/1w5o5-OptxZ7IGmsrjgw2ZAiqa4TEP8G3/view?usp=sharing
Srinivasan, R., Mignacco, F., Sorbaro, M., Refinetti, M., Cooper, A., Kreiman, G., & Dellaferrera, G. (2024). Forward learning with top-down feedback: empirical and analytical characterization. International Conference on Learning Representations (ICLR). https://drive.google.com/file/d/1wLp4rfVNwEEfHoZNo4j43fphQYzOklPi/view?usp=sharing
Jain, V., Alves Feitosa, F., & Kreiman, G. (2024). Is AI fun? HumorDB: a curated dataset and benchmark to investigate graphical humor. ArXiv, 2406.13564. https://drive.google.com/file/d/1jhPcgQz4fZ3n8Dr9zjwVUZv4fEtcfP-3/view?usp=sharing
Djambazovska, S., Zafer, A., Ramezanpour, H., Kreiman, G., & Kar, K. (2024). The impact of scene context on visual object recognition: comparing humans, monkeys, and computaitonal models. BioRxiv, 2024.05.27.596127. https://drive.google.com/file/d/1fupRPZWoNRKTCpaxDhZgGXZPXu2xBejT/view?usp=sharing
Li, C., Kreiman, G., & Ramanathan, S. (2024). Discovering neural policies to drive behavior by integrating deep reinforcement learning agents with biological neural networks. Nature Machine Intelligence, 6, 726–738. https://drive.google.com/file/d/1vjYtz9-5oBMIFco0MnA6Cg1K5nLjM84P/view?usp=sharing
Xiao, W., Sharma, S., Kreiman, G., & Livingstone, M. (2024). Feature-selective responses in macaque visual cortex follow eye movements during natural vision. Nature Neuroscience, 6, 1157–1166. https://drive.google.com/file/d/1VtRSxIwrgjZ1dqDOYMCobuZS2N946qc5/view?usp=sharing

2023

Talbot, M. B., Zawar, R., Badkundri, R., Zhang, M., & Kreiman, G. (2023). Tuned compositional feature replays for efficient stream learning. IEEE Transactions on Neural Networks and Learning Systems, PP. https://drive.google.com/file/d/1WN6RMwjhIinpMoz7Brg-mjwhrXZCkTcH/view?usp=sharing
Zhang, Y., Aghajan, Z., Ison, M., Lu, Q., Tang, H., Kalender, G., Monsoor, T., Zheng, J., Kreiman, G., Roychowdhury, V., & Fried, I. (2023). Decoding of human identity by computer vision and neuronal vision. Scientific Reports, 13, 651. https://drive.google.com/file/d/12LdYWEuyd0PlTzqKfabInpr5iNbj_ItO/view?usp=sharing
Xiao, Y., Sanchez Lopez, P., Wu, R., Wei, P., Shan, Y., Weisholtz, D., Cosgrove, C., Madsen, J., Stone, S., Zhao, G., & Kreiman, G. (2023). Integration of recognition, episodic, and associative memories during complex human behavior. BioRxiv, 2023.03.27.534384. https://drive.google.com/file/d/1v6qH8A2sKQmuLsqEN1JFGms3Bl2UHmQm/view?usp=sharing
Melloni, L., Mudrik, L., Pitts, M., Bendtz, K., Ferrante, O., Gorska, U., Hirschhorn, R., Khalaf, A., Kozma, C., Lepauvre, A., Liu, L., Mazumder, D., Richter, D., Zhou, H., Blumenfeld, H., Boly, M., Chalmers, D. J., Devore, S., Fallon, F., … Tononi, G. (2023). An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLoS One, 18(2), e0268577. https://drive.google.com/file/d/1HfyMaLGNHirBf5J9tZwI7VuanJzzIzpS/view?usp=sharing
Triggiani, A. I., Kreiman, G., Lewis, C., Maoz, U., Mele, A., Mudrik, L., Roskies, A., Schurger, A., & Hallett, M. (2023). What is the intention to move and when does it occur? Neurosci Biobehav Rev, 105199. https://drive.google.com/file/d/1Y3nNMX-fOPonO8_pdBIgSWtxeuhH9NHI/view?usp=sharing
Xiao, Y., Chou, C. C., Cosgrove, G. R., Crone, N. E., Stone, S., Madsen, J. R., Reucroft, I., Shih, Y. C., Weisholtz, D., Yu, H. Y., Anderson, W. S., & Kreiman, G. (2023). Cross-task specificity and within-task invariance of cognitive control processes. Cell Rep, 42(1), 111919. https://drive.google.com/file/d/1yzqKckUcBZzjwZK0Aq1pbLR_4-fsBaMQ/view?usp=sharing
Bricken, T., Schaeffer, R., Olshausen, B. A., & Kreiman, G. (2023). Emergence of sparse representations from noise. International Conferenece on Machine Learning (ICML). https://drive.google.com/file/d/1-fawIn1gDV0wOzXJp-ONQAOwetLpr3Tr/view?usp=sharing
Bricken, T., Davies, A., Singh, D., Krotov, D., & Kreiman, G. (2023). Sparse distributed memory is a continual learner. International Conference on Learning Representations (ICLR). https://drive.google.com/file/d/1Pv0SE1kmPrp5-gfFpp-IEnIEj4livKQJ/view?usp=sharing
Wang, C., Subramaniam, V., Yaari, A., Kreiman, G., Katz, B., Cases, I., & Barbu, A. (2023). BrainBERT: Self-supervised representation learning for Intracranial Electrodes. International Conference on Learning Representations (ICLR). https://drive.google.com/file/d/1A4S1fgEPfSGHjCU7j4xuraV8gpQRGRL8/view?usp=sharing
Xiao, W., Zhang, M., & Kreiman, G. (2023). Artificial Intelligence in Neuroscience. In F. Akter, N. Emptage, F. Engert, & M. Berger (Eds.), Neuroscience for neurosurgeons. Cambridge University Press. https://drive.google.com/file/d/16DHYZiusdyryL2N9-Q91t0s4zcSkZ_Xd/view?usp=sharing
Kreiman, G. (2023). Neural coding: Stimulating cortex to alter visual perception. Current Biology, 33, R117–R118. https://drive.google.com/file/d/12LdYWEuyd0PlTzqKfabInpr5iNbj_ItO/view?usp=sharing
Casper, S., Killian, T., Kreiman, G., & Hadfield-Mennell, D. (2023). White-box adversarial policies against RL agents. ArXiv, 2209.02167. https://drive.google.com/file/d/1iQNPD0VderZP1RHihinCPyPQtOEgan_2/view?usp=sharing
Aghajan, Z., Kreiman, G., & Fried, I. (2023). Minute-scale periodicity of neuronal firing in the human entorhinal cortex. Cell Reports, 42, 113271. https://drive.google.com/file/d/17Ql4jFLe0efaBesKWNho8Sfg3c6oFinI/view?usp=sharing
Singh, P., Li, Y., Sikarwar, A., Lei, W., Gao, D., Talbot, M., Sun, Y., Shou, M., Kreiman, G., & Zhang, M. (2023). Learning to Learn: How to Continuously Teach Humans and Machines. International Conference on Computer Vision (ICCV). https://drive.google.com/file/d/1iaiPhS-IrJMFXzygwnXUa_urok-0bN6Z/view?usp=sharing

2022

Zhang, M., Dellaferrera, G., Sikarwar, A., Armendariz, M., Mudrik, N., Agrawal, P., Madan, S., Barbu, A., Yang, H., Kumar, T., Sadwani, M., Dellaferrera, S., Pizzochero, M., Pfister, H., & Kreiman, G. (2022). Human or Machine? Turing Tests for Vision and Language. ArXiv, 2211.13087. https://drive.google.com/file/d/1WhrlNJP9kxS3YeCJYEjbvuz6nRd0lNmG/view?usp=sharing
Zheng, J., Schjetnan, A., Yebra, M., Mosher, C., Kalia, S., Valiante, T., Mamelak, A., Kreiman, G., & Rutishauser, U. (2022). Neurons detect cognitive boundaries to structure episodic memories in humans. Nature Neuroscience, 25, 358–368. https://drive.google.com/file/d/1nPiLepEojmi0sfJ2Pmf6rd0Zami8Qmln/view?usp=sharing
Bardon, A., Xiao, W., Ponce, C. R., Livingstone, M. S., & Kreiman, G. (2022). Face neurons encode nonsemantic features. Proc Natl Acad Sci U S A, 119(16), e2118705119. https://drive.google.com/file/d/1JI2VRqVQKvRUOVpZnmXf5-_Q-qOr3xMa/view?usp=sharing
Hoogsteen, K., Szpiro, S., Kreiman, G., & Peli, E. (2022). Beyond the cane: describing urban scenes to blind people for mobility tasks. ACM Transactions on Accessible Computing. https://drive.google.com/file/d/1xXD8YPg45fXJuXwasonKJXMGKpPBKnk2/view?usp=sharing
Zhang, M., Armendariz, M., Xiao, W., Rose, O., Bendtz, K., Livingstone, M., Ponce, C., & Kreiman, G. (2022). Look twice: A generalist computational model predicts return fixations across tasks and species. PLoS Comput Biol, 18(11), e1010654. https://drive.google.com/file/d/1wa6yHmT1hWXQWulicpYwpHHE9I4r3gDZ/view?usp=sharing
Dellaferrera, G., & Kreiman, G. (2022). Error-driven input modulation: solving the credit assignment problem without a backward pass. Proceeedings of Machine Learning Research (International Conference on Machine Learning (ICML)), 162, 4937–4955. https://drive.google.com/file/d/1i_4BJ2mZQw9kJVRL2gQnjVIIL4DoRLtZ/view?usp=sharing
Shaham, N., Chandra, J., Kreiman, G., & Sompolinsky, H. (2022). Stochastic consolidation of lifelong memory. Scientific Reports, 12, 13107. https://drive.google.com/file/d/1dyCT17Tsitqw5jzFoqEIY_vXTBIf2g1e/view?usp=sharing
Sikarwar, A., & Kreiman, G. (2022). On the efficacy of co-attention transformer layers in visual question answering. ArXiv, 2201.03965. https://drive.google.com/file/d/1AbjhZIKPMAEoAwWnE48jIkpFS_JlnH9b/view?usp=sharing
Armendariz, M., W, Xiao., Vinken, K., & Kreiman, G. (2022). Do computational models of vision need shape-based representations? Evidence from an individual with intriguing visual perceptions. Cognitive Neuropsychology, 38, 75–77. https://drive.google.com/file/d/1GR4l1smEOmpzB-F1OvI4lFD4KJTCWfZb/view?usp=sharing
Murugan, R., & Kreiman, G. (2022). Multiple transcription auto regulatory loops can act as robust oscillators and decision-making motifs. Computational and Structural Biotechnology Journal, 20, 5155–5135. https://drive.google.com/file/d/18rl1acDXQFG9exuSye9xx2_DVlPX_oMZ/view?usp=sharing
Casper, S., Nadeau, M., & Kreiman, G. (2022). Robust feature-level adversaries are interpretability tools. Neural Information Processing Systems (NeurIPS), 36. https://drive.google.com/file/d/1wa6yHmT1hWXQWulicpYwpHHE9I4r3gDZ/view?usp=sharing
Ding, Z., Ren, X., David, E., Vo, M., Kreiman, G., & Zhang, M. (2022). Efficient zero-shot visual wearch via target and context-aware transformer. ArXiv, 2211.13470. https://drive.google.com/file/d/1r_acxvANg9e4H_loPf3Y19-USWaL_8Lx/view?usp=sharing
Liu, X., Sikarwar, A., Lim, J., Kreiman, G., Shi, Z., & Zhang, M. (2022). Reason from context with self-supervised learning. ArXiv, 2211.12817. https://drive.google.com/file/d/1L3fHn7tttVaPLPQppe9drcx74L3oPxeZ/view?usp=sharing

2021

Gupta, S. K., Zhang, M., Wu, C.-C., Wolfe, J. M., & Kreiman, G. (2021). Visual search asymmetry: deep nets and humans share similar inherent biases. Advances in Neural Information Processing Systems, 34, 6946–6959. https://drive.google.com/file/d/1Mya9VBNj__NaRipMzS63_D88Gko_gZ9k/view?usp=sharing
Casper, S., Boix, X., D’Amario, V., Guo, L., Schrimpf, M., Vinken, K., & Kreiman, G. (2021, May 31). Frivolous units: wider networks are not really that wide. https://drive.google.com/file/d/1qxroNzo8RWu2pr62P1UFlRHhGO6qOG5w/view?usp=sharing
Bomatter, P., Zhang, M., Karev, D., Madan, S., Tseng, C., & Kreiman, G. (2021). When pigs fly: contextual reasoning in synthetic and natural scenes. International Conference on Computer Vision (ICCV). https://drive.google.com/file/d/11nUVQHh4vucGpmokq-RD0Fl9fJOAYFWu/view?usp=sharing
Weisholtz, D. S., Kreiman, G., Silbersweig, D. A., Stern, E., Cha, B., & Butler, T. (2021). Localized Task-Invariant Emotional Valence Encoding Revealed by Intracranial Recordings. Soc Cogn Affect Neurosci. https://drive.google.com/file/d/1BneHkJcVTX40ji0I6vUNKcer8UmSkQlv/view?usp=sharing
Zhang, M., & Kreiman, G. (2021). Beauty is in the eye of the machine. Nature Human Behaviour, 5. https://drive.google.com/file/d/1rYQe0N7KhpeK5zBNjdhZXtbB4meH4oKl/view?usp=sharing
Li, C., & Dezza, A. (2021). What matters in branch specialization? Using a toy task to make predictions. Shared Visual Representations in Human and Machine Intelligence (SVRHM). Workshop at NeurIPS. https://drive.google.com/file/d/1X5R_1iic19J0csWHsy6UtEIy3M5MzVGw/view?usp=sharing
Wang, J., Tao, A., Anderson, W., Madsen, J., & Kreiman, G. (2021). Mesoscopic physiological interactions in the human brain reveal small world properties. Cell Reports, 36(8). https://drive.google.com/file/d/1G-Bs2uu4SlyQYmJfjxtVj2gFG8DG1l7J/view?usp=sharing
Bricken, T., & Pehlevan, C. (2021). Attention approximates sparse distributed memory. 1172, 15301–15315. https://drive.google.com/file/d/1Xgv3z9T1dDDCGHwKWSbOh1UGzOP4zK3R/view?usp=sharing

2020

Kreiman, G., & Serre, T. (2020). Beyond the feedforward sweep: feedback computations in the visual cortex. Annals of the New York Academy of Sciences, 1464(1), 222–241. https://drive.google.com/file/d/1gfeBMnjb2LzNpy8JgKsOWKxhkATaCtyO/view?usp=sharing
Jacquot, V., Ying, Z., & Kreiman, G. (2020). Can deep learning recognize subtle human activities? Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 14244–14253. https://drive.google.com/file/d/1nIgHtPva-0-G3hMZ-8DjqHXQezkFYlno/view?usp=sharing
Olson, J., & Kreiman, G. (2020). Simple learning rules generate complex cannonical circuits. ArXiv, 2009.06118. https://drive.google.com/file/d/1f-FIfDo1s2wZliv8S5REmRyjyjHaLONd/view?usp=sharing
Ben-Yosef, G., Kreiman, G., & Ullman, S. (2020). Minimal videos: Trade-off between spatial and temporal information in human and machine vision. Cognition, 201, 104263. https://drive.google.com/file/d/1v-FHz3ywI5zKEBhG6uuOBri2v8_NXaec/view?usp=sharing
Zhang, M., Tseng, C., & Kreiman, G. (2020). Putting visual object recognition in context. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 12985–12994. https://drive.google.com/file/d/1gIwKz14reyTs_KUXCNLapTr3jn5k1hkK/view?usp=sharing
Lotter, W., Kreiman, G., & Cox, D. (2020). A neural network trained for prediction mimics diverse features of biological neurons and perception. Nature Machine Learning, 2, 210–219. https://drive.google.com/file/d/1rZbCB5BigMch0tDq4ZSrhJIQAVEUoFL0/view?usp=sharing
Xiao, W., & Kreiman, G. (2020). XDream: Finding preferred stimuli for visual neurons using generative networks and gradient-free optimization. PLoS Computational Biology, 16(6), e1007973. https://drive.google.com/file/d/1oVtV74EXEUBkD_gzFz8rmfnJlQ_sias_/view?usp=sharing
Vinken, K., Boix, X., & Kreiman, G. (2020). Incorporating intrinsic suppression in deep neural networks captures dynamics of adaptation in neurophysiology and perception. Science Advances, 6, eabd4205. https://drive.google.com/file/d/1QTfDn3nbFr0TFimm_wC3g5f7-qI6VvJB/view?usp=sharing
Yuan, L., Xiao, W., Kreiman, G., Tay, F., Feng, J., & Livingstone, M. (2020). Adversarial images for the primate brain. ArXiv, 2011.05623. https://drive.google.com/file/d/1PtPaXlPn3R2tCt4cLeR_3fwDa2tAWdJu/view?usp=sharing
O’Connell, T. P., Chun, M. M., & Kreiman, G. (2019). Zero-shot neural decoding of visual categories without prior exemplars. BioRxiv, 700344. https://drive.google.com/file/d/1OfRgR9-ldp9N7UaR3-sh7Ath_X48cmz4/view?usp=sharing
Ben-Yosef, G., Kreiman, G., & Ullman, S. (n.d.). What can human minimal videos tells us about dynamic recognition models. Workshop at International Conference on Learning Representations (ICLR). https://drive.google.com/file/d/1ghrMTjLRPfQ4u01OanPXE2qtOHKizYbU/view?usp=sharing

2019

Kreiman, G. (2019). It’s a small dimensional world after all: Comment on “The unreasonable effectiveness of small neural ensembles in high-dimensional brain” by Alexander N. Gorban et al. Physics of Life Reviews, 29, 96–97. https://drive.google.com/file/d/1pbnU190s0Z5m-sxg-2yC01TXQ4JNIVDD/view?usp=sharing
Madhavan, R., Bansal, A. K., Madsen, J. R., Golby, A. J., Tierney, T. S., Eskandar, E. N., Anderson, W. S., & Kreiman, G. (2019). Neural interactions underlying visuomotor associations in the human brain. Cerebral Cortex, 29(11), 4551–4567. https://drive.google.com/file/d/1Yex3VGmNP7A7N1O4BWQbeI16I27zc5ZA/view?usp=sharing
Xiao, W., Chen, H., Liao, Q., & Poggio, T. (2019). Biologically-plausible learning algorithms can scale to large datasets. International Conference on Learning Representations (ICLR). https://drive.google.com/file/d/1W0vPDjFkwEMBXC58n5GYA-34R_jii8u7/view?usp=sharing
Kreiman, Gabriel. (2019). What do neurons really want? The role of semantics in cortical representations. In Psychology of Learning and Motivation (Kara D. Federmeier, Diane M. Beck, Vol. 70). Elsevier. https://drive.google.com/file/d/1GbiSjI7JcbRGI_ALSOCtn35jPlaUSH8M/view?usp=sharing
Zhang, M., Tseng, C., Montejo, K., Kwon, J., & Kreiman, G. (2019). Lift-the-flap: what, where and when for context reasoning. ArXiv:1902.00163 [Cs]. https://drive.google.com/file/d/10eGX_Ms3W5yvt3xlWmmwPaf_7ejo3sbo/view?usp=sharing
Ponce, C. R., Xiao, W., Schade, P. F., Hartmann, T. S., Kreiman, G., & Livingstone, M. (2019). Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences. Cell. https://drive.google.com/file/d/1qIgJEEl1faR40XNJwzjrEiuoiqnZq7_P/view?usp=sharing

2018

Zhang, M., Feng, J., Lim, J. H., Zhao, Q., & Kreiman, G. (2018). What am I searching for? ArXiv:1807.11926 [Cs]. https://drive.google.com/file/d/1kiDngbF1VJcQZ09jDEdnEoEp52wraBCF/view?usp=sharing
Misra, P., Marconi, A., Peterson, M., & Kreiman, G. (2018). Minimal memory for details in real life events. Scientific Reports, 8(1), 16701. https://drive.google.com/file/d/1BR-KWWt2D33bcMf3zWeujWPyHYYdnrix/view?usp=sharing
Isik, L., Singer, J., Madsen, J. R., Kanwisher, N., & Kreiman, G. (2018). What is changing when: Decoding visual information in movies from human intracranial recordings. NeuroImage, 180(Pt A), 147–159. https://drive.google.com/file/d/1wKvAO8A4APgdqut-uTTGiGoL1YeJO7rT/view?usp=sharing
Zhang, M., Feng, J., Ma, K. T., Lim, J. H., Zhao, Q., & Kreiman, G. (2018). Finding any Waldo with zero-shot invariant and efficient visual search. Nature Communications, 9(1), 3730. https://drive.google.com/file/d/1IXgM2OAnLNIRR75hJTcpNg0rNny7gG-h/view?usp=sharing
Tang, H., Schrimpf, M., Lotter, W., Moerman, C., Paredes, A., Ortega Caro, J., Hardesty, W., Cox, D., & Kreiman, G. (2018). Recurrent computations for visual pattern completion. Proceedings of the National Academy of Sciences of the United States of America, 115(35), 8835–8840. https://drive.google.com/file/d/1iP_4T-Q04x_3TZ9jxiH6SWVuYoyG1aY3/view?usp=sharing
Palepu, A., Premanathan, S., Azhar, F., Vendrame, M., Loddenkemper, T., Reinsberger, C., Kreiman, G., Parkerson, K. A., Sarma, S., & Anderson, W. S. (2018). Automating interictal spike detection: revisiting a simple threshold rule. Conference Proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2018, 299–302. https://drive.google.com/file/d/1M9sTcFimpIqcIEmGw9d6B0dCIkjT9zV5/view?usp=sharing
Wu, E., Wu, K., & Kreiman, G. (n.d.). Learning scene gist with convolutional neural networks to improve object recognition. Information Sciences and Systems (CISS). https://drive.google.com/file/d/1OcQKDEQYMhh2RhIv37w1mKXt1rk4Habz/view?usp=sharing

2017

Lotter, W., Kreiman, G., & Cox, D. (2017). Deep predictive coding networks for video prediction and unsupervised learning. International Conference on Learning Representations (ICLR), arXiv:1605.08104. https://drive.google.com/file/d/1XjMhd70hMCduoMMW0V0wNw6LaDLCmikG/view?usp=sharing
Tang, H., & Kreiman, G. (2017). Recognition of occluded objects. In Q. Zhao (Ed.), Computational and Cognitive Neuroscience of Vision. Springer-Verlag. https://drive.google.com/file/d/1ulsENJnTlQdcoiq2RmfGr6IFrIFlJT3d/view?usp=sharing
Cheney, N., Schrimpf, M., & Kreiman, G. (2017). On the robustness of convolutional neural networks to internal architecture and weight perturbations. ArXiv, 1703.08245. https://drive.google.com/file/d/15WcwKBsS7dkg0jOFdBhNGR-tHqsdP9oP/view?usp=sharing

2016

Kreiman, G. (2017). A null model for cortical representations with grandmothers galore. Language, Cognition and Neuroscience, 32(3), 274–285. https://drive.google.com/file/d/1D4JsAoXYZA8lMOgUqwnPeyQBgPMVvn_i/view?usp=sharing
Tang, H., Yu, H.-Y., Chou, C.-C., Crone, N. E., Madsen, J. R., Anderson, W. S., & Kreiman, G. (2016). Cascade of neural processing orchestrates cognitive control in human frontal cortex. ELife, 5. https://drive.google.com/file/d/1WwhlRmjakVwHayaRYZXur2o25ywbaHKw/view?usp=sharing
Gomez-Laberge, C., Smolyanskaya, A., Nassi, J. J., Kreiman, G., & Born, R. (2016). Bottom-up and top-down input augment the variability of cortical neurons. Neuron, 91(3), 540–547. https://drive.google.com/file/d/1hZdCTjS11FJmkuibFkqnXY-0gx9i3PiW/view?usp=sharing
Miconi, T., Groomes, L., & Kreiman, G. (2016). There’s Waldo! A normalization model of visual search predicts single-trial human fixations in an object search task. Cerebral Cortex, 26(7), 3064–3082. https://drive.google.com/file/d/1D-KMyDTAuZlcz-Fnw_v-miO_DXpoopMl/view?usp=sharing
Tang, S., Hemberg, M., Cansizoglu, E., Belin, S., Kosik, K., Kreiman, G., Steen, H., & Steen, J. (2016). f-divergence cutoff index to simultaneously identify differential expression in the integrated transcriptome and proteome. Nucleic Acids Res, 44(10), e97. https://drive.google.com/file/d/1U_EdEJ4n88cJ-OUwDa5-zkKMcX8bUPp3/view?usp=sharing
Lotter, W., Kreiman, G., & Cox, D. (2016). Unsupervised representation learning using predictive generative networks. International Conference on Learning Representations (ICLR). https://drive.google.com/file/d/1WS1HKyMHLECGPLHKQ9MDVyB8a5Bjp7Nm/view?usp=sharing
Tang, H., Singer, J., Ison, M., Pivazyan, G., Romaine, M., Frias, R., Meller, E., Boulin, A., Carroll, J. D., Perron, V., Dowcett, S., Arlellano, M., & Kreiman, G. (2016). Predicting episodic memory formation for movie events. Scientific Reports, 6, 30175. https://drive.google.com/file/d/1dFHJTXbjSnwZeYipvL639qObNwahIT8U/view?usp=sharing

2015

Singer, J. M., Madsen, J. R., Anderson, W. S., & Kreiman, G. (2015). Sensitivity to timing and order in human visual cortex. Journal of Neurophysiology, 113(5), 1656–1669. https://drive.google.com/file/d/1whAf-vHiUigEG_uE9qdsw4GjvZ7J52L-/view?usp=sharing
Madhavan, R., Millman, D., Tang, H., Crone, N., Lenz, F., Madsen, J., Anderson, W., & Kreiman, G. (2015). Decrease in gamma-band activity in the human parahippocampal gyrus during sequence learning. Frontiers in Systems Neuroscience, 8, 222. https://drive.google.com/file/d/122YJxEg9K7tclaa5R7yRnPRaWKHMLl0D/view?usp=sharing

2014

Kim, T.-K., Hemberg, M., & Gray, J. M. (2015). Enhancer RNAs: a class of long noncoding RNAs synthesized at enhancers. Cold Spring Harbor Perspectives in Biology, 7(1), a018622. https://drive.google.com/file/d/1jrZoKoui9jjlUOlZySsdog_K4ZcuuqAl/view?usp=sharing
Prabakaran, S., Hemberg, M., Chauhan, R., Winter, D., Tweedie-Cullen, R. Y., Dittrich, C., Hong, E., Gunawardena, J., Steen, H., Kreiman, G., & Steen, J. A. (2014). Quantitative profiling of peptides from RNAs classified as noncoding. Nature Communications, 5, 5429. https://drive.google.com/file/d/1pOsiWNBiVoXBseNzC2TYoyYTccwWrzV8/view?usp=sharing
Malik, A. N., Vierbuchen, T., Hemberg, M., Rubin, A. A., Ling, E., Couch, C. H., Stroud, H., Spiegel, I., Farh, K. K.-H., Harmin, D. A., & Greenberg, M. E. (2014). Genome-wide identification and characterization of functional neuronal activity-dependent enhancers. Nature Neuroscience, 17(10), 1330–1339. https://drive.google.com/file/d/1jYDWzE_ALtq7Ckz2bYbO11Z5kaWtL6Nx/view?usp=sharing
Tang, H., Buia, C., Madhavan, R., Crone, N. E., Madsen, J. R., Anderson, W. S., & Kreiman, G. (2014). Spatiotemporal dynamics underlying object completion in human ventral visual cortex. Neuron, 83(3), 736–748. https://drive.google.com/file/d/1M7S0aPXpn6eVpIcpXGp4LLHOc4P9aw-p/view?usp=sharing
Pinto, A. L. R., Fernández, I. S., Peters, J. M., Manganaro, S., Singer, J. M., Vendrame, M., Prabhu, S. P., Loddenkemper, T., & Kothare, S. V. (2014). Localization of sleep spindles, k-complexes, and vertex waves with subdural electrodes in children. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 31(4), 367–374. https://drive.google.com/file/d/1dUKV7iER4HQNly6DWw46rvKtmJ_82O6B/view?usp=sharing
Singer, J. M., & Kreiman, G. (2014). Short temporal asynchrony disrupts visual object recognition. Journal of Vision, 14(5), 7. https://drive.google.com/file/d/1-lnhI2APb210E5voFg_Rkh5sXGNaltX2/view?usp=sharing
Frost, B., Hemberg, M., Lewis, J., & Feany, M. B. (2014). Tau promotes neurodegeneration through global chromatin relaxation. Nature Neuroscience, 17(3), 357–366. https://drive.google.com/file/d/14Qiq4JBQY1N7i5E808Aqzh40DEOA44ll/view?usp=sharing
Bansal, A. K., Madhavan, R., Agam, Y., Golby, A., Madsen, J. R., & Kreiman, G. (2014). Neural dynamics underlying target detection in the human brain. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(8), 3042–3055. https://drive.google.com/file/d/1oq85yIaWNWgAJrVan5HKJyyeHGtIIefg/view?usp=sharing
Nassi, J. J., Gómez-Laberge, C., Kreiman, G., & Born, R. T. (2014). Corticocortical feedback increases the spatial extent of normalization. Frontiers in Systems Neuroscience, 8, 105. https://drive.google.com/file/d/1uKUX7-C5NKZKTFXy8irB-RlLstquCcnV/view?usp=sharing
Kreiman, G. (2014). Neural correlates of consciousness: perception and volition. In M. Gazzaniga (Ed.), Cognitive Neuroscience: Vol. V. MIT Press. https://drive.google.com/file/d/1BpVk3nqnY_M4lsV8eMFjwE5nJYIRCzO0/view?usp=sharing
Kreiman, G., Rutishauser, U., Cerf, M., & Fried, I. (2014). The next ten years and beyond. In I. Fried, U. Rutishauser, M. Cerf, & G. Kreiman (Eds.), Single neuron studies of the human brain. Probing cognition. MIT Press. https://drive.google.com/file/d/1weFPGw1Wrd_NAtaRQRGO8mwI7UB84UNk/view?usp=sharing
Mormann, F., Ison, M., Quiroga, R., Koch, C., Fried, I., & Kreiman, G. (2014). Visual cognitive adventures of single neurons in the human medial temporal lobe. In I. Fried, U. Rutishauser, M. Cerf, & G. Kreiman (Eds.), Single neuron studies of the human brain. Probing cognition. (pp. 121–151). MIT Press. https://drive.google.com/file/d/1gHJRrjUfv2R9fRJB2hdgJJLXIp8BiCLV/view?usp=sharing
Bansal, A. (2014). Human single unit activity for reach and grasp motor prostheses. In I. Fried, M. Cerf, U. Rutishauser, & G. Kreiman (Eds.), Single neuron studies of the human brain. MIT Press. https://drive.google.com/file/d/1xEBRGwp7PJCBAbufG89i6zVqLp2r-Nii/view?usp=sharing
Rutishauser, U., Cerf, M., & Kreiman, G. (2014). Data analysis techniques for human microwire recordings: spike detection and sorting, decoding, relation between units and local field potentials. In I. Fried, U. Rutishauser, M. Cerf, & G. Kreiman (Eds.), Single neuron studies of the human brain. Probing cognition. MIT Press. https://drive.google.com/file/d/1IecHoty80HH6jVpIUcVysBWqxA7f64rG/view?usp=sharing
Fried, I., Rutishauser, U., Cerf, M., & Kreiman, G. (Eds.). (2014). Single neuron studies of the human brain: probing cognition. The MIT Press. https://klab.tch.harvard.edu/publications/Publications_Books.html

2013

Kreiman, Gabriel. (2013). Mind the quantum? Trends in Cognitive Science, 17(3), 109. https://drive.google.com/file/d/1xtKxEXk5w0UKH5Lkf7e5rU9njUa4M6QW/view?usp=sharing
Kreiman, G. (2013). Computational models of visual object recognition. In S. Panzeri & R. Quian Quiroga (Eds.), Principles of neural coding. CRC Press. https://drive.google.com/file/d/1rV7Ff0Q6piAUf9JBjAt72kvk1Tr4gA_s/view?usp=sharing

2012

Bansal, A. K., Singer, J. M., Anderson, W. S., Golby, A., Madsen, J. R., & Kreiman, G. (2012). Temporal stability of visually selective responses in intracranial field potentials recorded from human occipital and temporal lobes. Journal of Neurophysiology, 108(11), 3073–3086. https://drive.google.com/file/d/18Q69QcUTWYRsGWxbGPjvJC-NJCcb__PD/view?usp=sharing
Bansal, A. K., Truccolo, W., Vargas-Irwin, C. E., & Donoghue, J. P. (2012). Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials. Journal of Neurophysiology, 107(5), 1337–1355. https://drive.google.com/file/d/1EftO04tVg3i_A3sd5i0pGs_PHb-YMR7x/view?usp=sharing
Ross, S. E., McCord, A. E., Jung, C., Atan, D., Mok, S. I., Hemberg, M., Kim, T.-K., Salogiannis, J., Hu, L., Cohen, S., Lin, Y., Harrar, D., McInnes, R. R., & Greenberg, M. E. (2012). Bhlhb5 and Prdm8 form a repressor complex involved in neuronal circuit assembly. Neuron, 73(2), 292–303. https://drive.google.com/file/d/1bEgM4WaCyqZd5PVU9-BKf3LtLbfIcC6R/view?usp=sharing
Burbank, K. S., & Kreiman, G. (2012). Depression-biased reverse plasticity rule is required for stable learning at top-down connections. PLoS Computational Biology, 8(3), e1002393. https://drive.google.com/file/d/1HkcACvvq78RFXOzBBa3J96svxWFDd_b_/view?usp=sharing
Hemberg, M., Gray, J. M., Cloonan, N., Kuersten, S., Grimmon, S., Greenberg, M. E., & Kreiman, G. (2012). Integrated genome analysis suggests that most conserved non-coding sequences are regulatory factor binding sites. Nucleic Acids Research, 40, 7858–7869. https://drive.google.com/file/d/1ndFlFnoNm6NWJqVM82p7F71Tmqhte02q/view?usp=sharing
Murugan, R., & Kreiman, G. (2012). Theory on the coupled stochastic dynamics of transcription and splice-site recognition. PLoS Computational Biology, 8(11), e1002747. https://drive.google.com/file/d/1lDHgV3BfQQpx0KeOAZ4HaZj7LfM0sJTL/view?usp=sharing

2011

Tang, H., & Kreiman, G. (2011). Face recognition: vision and emotions beyond the bubble. Current Biology: CB, 21(21), R888-890. https://drive.google.com/file/d/1DgBM0YDB4CsbMBfUXm12JG7jy6O0RJUm/view?usp=sharing
Cohen, S., Gabel, H. W., Hemberg, M., Hutchinson, A. N., Sadacca, L. A., Ebert, D. H., Harmin, D. A., Greenberg, R. S., Verdine, V. K., Zhou, Z., Wetsel, W. C., West, A. E., & Greenberg, M. E. (2011). Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron, 72(1), 72–85. https://drive.google.com/file/d/1tJsJHp_8ttqkht3Z_Dr4H63lvJzTZK4s/view?usp=sharing
Murugan, R., & Kreiman, G. (2011). On the minimization of fluctuations in the response times of autoregulatory gene networks. Biophysical Journal, 101(6), 1297–1306. https://drive.google.com/file/d/1092cg5fEGY2NZKcuZCqvcEMVxIrI9uVU/view?usp=sharing
Fried, I., Mukamel, R., & Kreiman, G. (2011). Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron, 69(3), 548–562. https://drive.google.com/file/d/1tsfukdWlN4ar0qlCRWOIw2VsuVWsWX_b/view?usp=sharing
Chen, L. L., Madhavan, R., Rapoport, B. I., & Anderson, W. S. (2011). A method for real-time cortical oscillation detection and phase-locked stimulation. Conference Proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2011, 3087–3090. https://drive.google.com/file/d/1o55hr04F1wEbT75P9TOkHHiGfCoU8-xH/view?usp=sharing
Anderson, G., WS, Kreiman. (2011). Neuroscience: What we cannot model, we do not understand. Current Biology, 21(3), R124. https://drive.google.com/file/d/1bg6hYxE2-eFjUDNuAX7al2te7Zpd6cFQ/view?usp=sharing
Hemberg, M., & Kreiman, G. (2011). Conservation of transcription factor binding events predicts gene expression across species. Nucleic Acids Research, 39(16), 11. https://drive.google.com/file/d/1hqBF8ION7EIjOlk6he0kPRDST5P2VwCS/view?usp=sharing
Kreiman, Gabriel. (2011). Literary inspiration. Nature, 475, 453–454. https://drive.google.com/file/d/1V5hA0S6khvyi_hTpr5WwgXI587MI8NZl/view?usp=sharing
Kreiman, G., & Maunsell, J. (2011). Nine criteria for a measure of scientific output. Frontiers in Computational Neuroscience, 5, 48. https://drive.google.com/file/d/1_XzzjqcibvkJyCjODIFfOe4aCfoKCZEy/view?usp=sharing
Singer, J., & Kreiman, G. (2011). Introduction to statistical learning and pattern classification. In N. Kriegeskorte & G. Kreiman (Eds.), Visual Population Codes. MIT Press. https://drive.google.com/file/d/1CM6ti1EXjMsqKvB_0b8a_jdMRDBTcrdN/view?usp=sharing
Meyers, E. M., & Kreiman, G. (2011). Tutorial on pattern classification in cell recordings. In N. Kriegeskorte & G. Kreiman (Eds.), Understanding visual population codes. MIT Press. https://drive.google.com/file/d/1dXGwmMaLqhB6gcK78ArZ97LwQ7C1rEcD/view?usp=sharing
Burbank, K., & Kreiman, G. (2011). Introduction to the anatomy and function of visual cortex. In N. Kriegeskorte & G. Kreiman (Eds.), Understanding visual population codes. MIT Press. https://drive.google.com/file/d/1eTCRt53AjXj8fXetDI3vg3nyGaat9nxI/view?usp=sharing
Kriegeskorte, N., & Kreiman, G. (2011). Visual Population Codes. MIT Press. https://klab.tch.harvard.edu/publications/Publications_Books.html

2010

Blumberg, J., & Kreiman, G. (2010). How cortical neurons help us see: visual recognition in the human brain. The Journal of Clinical Investigation, 120(9), 3054–3063. https://drive.google.com/file/d/1sCpP3eZ6wIcOK1DZqWL0q1QC9cBaKeDj/view?usp=sharing
Pfenning, A. R., Kim, T.-K., Spotts, J. M., Hemberg, M., Su, D., & West, A. E. (2010). Genome-wide identification of calcium-response factor (CaRF) binding sites predicts a role in regulation of neuronal signaling pathways. PloS One, 5(5), e10870. https://drive.google.com/file/d/1j8C-Kc4JNNB5nbpUyj8mCYkhYFi67PRe/view?usp=sharing
Kim, T.-K., Hemberg, M., Gray, J. M., Costa, A. M., Bear, D. M., Wu, J., Harmin, D. A., Laptewicz, M., Barbara-Haley, K., Kuersten, S., Markenscoff-Papadimitriou, E., Kuhl, D., Bito, H., Worley, P. F., Kreiman, G., & Greenberg, M. E. (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465(7295), 182–187. https://drive.google.com/file/d/10FHtat4ALZbxgqyX2jJ8dXvw0WCaGUAY/view?usp=sharing
Agam, Y., Liu, H., Papanastassiou, A., Buia, C., Golby, A. J., Madsen, J. R., & Kreiman, G. (2010). Robust selectivity to two-object images in human visual cortex. Current Biology: CB, 20(9), 872–879. https://drive.google.com/file/d/1CqrR4x-99X8UQUujnzpHFq7OaLMyB4aX/view?usp=sharing
Singer, J. M., & Sheinberg, D. L. (2010). Temporal cortex neurons encode articulated actions as slow sequences of integrated poses. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(8), 3133–3145. https://drive.google.com/file/d/1mFIl5NtSuW3-upZ_E7q7pGAot2ea1MC0/view?usp=sharing
Quian Quiroga, R., & Kreiman, G. (2010). Measuring sparseness in the brain. Psychological Review, 117, 291–297. https://drive.google.com/file/d/1NlzGiHTnI1PHma43XcP7bdLV6muUuK3f/view?usp=sharing

2009

Ståhlberg, A., Bengtsson, M., Hemberg, M., & Semb, H. (2009). Quantitative transcription factor analysis of undifferentiated single human embryonic stem cells. Clinical Chemistry, 55(12), 2162–2170. https://drive.google.com/file/d/1N4q8Jdms7SVNXiPsTDIlHqblcr5Q2MWV/view?usp=sharing
Singer, J., & Kreiman, G. (2009). Toward unmasking the dynamics of visual perception. Neuron, 64(4), 446–447. https://drive.google.com/file/d/1PDJp3yp0ymEWAxlZSFhFFtBvwJtkGnN2/view?usp=sharing
Rasch, M., Logothetis, N. K., & Kreiman, G. (2009). From neurons to circuits: linear estimation of local field potentials. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(44), 13785–13796. https://drive.google.com/file/d/1OOVtJPHTuw9XGj6nbqs7E8rMDnHJOXWK/view?usp=sharing
Horng, S., Kreiman, G., Ellsworth, C., Page, D., Blank, M., Millen, K., & Sur, M. (2009). Differential gene expression in the developing lateral geniculate nucleus and medial geniculate nucleus reveals novel roles for Zic4 and Foxp2 in visual and auditory pathway development. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(43), 13672–13683. https://drive.google.com/file/d/1ecTrCI7k9yXCKtEv4qTLmoJyoT6POFJn/view?usp=sharing
Liu, H., Agam, Y., Madsen, J. R., & Kreiman, G. (2009). Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex. Neuron, 62(2), 281–290. https://drive.google.com/file/d/1WXsjrDrGU-rtw9nVbO5SY_wFEAdQf0mi/view?usp=sharing

2008

Flavell, S. W., Kim, T.-K., Gray, J. M., Harmin, D. A., Hemberg, M., Hong, E. J., Markenscoff-Papadimitriou, E., Bear, D. M., & Greenberg, M. E. (2008). Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron, 60(6), 1022–1038. https://drive.google.com/file/d/1v7cqo9BlHZRQnHn1IhSn4YWFl8w3OD1F/view?usp=sharing
Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K., & Poggio, T. (2008). Dynamic population coding of category information in inferior temporal and prefrontal cortex. Journal of Neurophysiology, 100(3), 1407–1419. https://drive.google.com/file/d/1jpUEbJbdCOreaUFL5BxfLq11eoHG8wMa/view?usp=sharing
Quiroga, R. Q., Kreiman, G., Koch, C., & Fried, I. (2008). Sparse but not “grandmother-cell” coding in the medial temporal lobe. Trends in Cognitive Sciences, 12(3), 87–91. https://drive.google.com/file/d/1ieNqRqBbxG39ndPMGIvIs76Ed-WMLzeU/view?usp=sharing
Leamey, C. A., Glendining, K. A., Kreiman, G., Kang, N.-D., Wang, K. H., Fassler, R., Sawatari, A., Tonegawa, S., & Sur, M. (2008). Differential gene expression between sensory neocortical areas: potential roles for Ten_m3 and Bcl6 in patterning visual and somatosensory pathways. Cerebral Cortex (New York, N.Y.: 1991), 18(1), 53–66. https://drive.google.com/file/d/1X8Z4mFI3hYIuWJBIKg6HS0ONDs3m44Lk/view?usp=sharing

2007

Kreiman, G. (2007). Brain science: from the very large to the very small. Current Biology, 17(17), R768–R770. https://drive.google.com/file/d/1yxrywwRQXs3A0iWVaVMUXU53F-O3a2-V/view?usp=sharing
Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., & Poggio, T. (2007). A quantitative theory of immediate visual recognition. Progress in Brain Research, 165, 33–56. https://drive.google.com/file/d/1eKjTWY6axodqrOCcH0jBkXzUXlaeeDqX/view?usp=sharing
Kreiman, G. (2007). Single neuron approaches to human vision and memories. Current Opinion in Neurobiology, 17(4), 471–475. https://drive.google.com/file/d/1YWLNfpbBBW-n0FSorR9mMPpTubujgq6e/view?usp=sharing

2006

Kreiman, G., Hung, C., Quian Quiroga, R., Kraskov, A., Poggio, T., & DiCarlo, J. (2006). Object selectivity of local field potentials and spikes in the inferior temporal cortex of macaque monkeys. Neuron, 49, 433–445. https://drive.google.com/file/d/1SSwgiMj-O0LrvUIEsoKFFcFvQNaIDAyz/view?usp=sharing
Tropea, D., Kreiman, G., Lychman, A., Mukherjee, S., Yu, H., Horng, S., & Sur, M. (2006). Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex. Nature Neuroscience, 9(5), 660–668. https://drive.google.com/file/d/1ZL2AH-7eTpY3WdyyGPyD3DMIOrQBzzFk/view?usp=sharing

2005

Kreiman, G., Fried, I., & Koch, C. (2005). Responses of single neurons in the human brain during flash suppression. In R. Blake & D. Alais (Eds.), Binocular Rivalry and Perceptual Ambiguity. MIT Press. https://drive.google.com/file/d/1J0Sck-KgSSWpcl6H8TcJNpWw6ukYXTAi/view?usp=sharing
Quian Quiroga, R., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435, 1102–1107. https://drive.google.com/file/d/1Q1kJ2mNvcNiJQnqqGajreqodScHcwqcn/view?usp=sharing
Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast Read-out of Object Identity from Macaque Inferior Temporal Cortex. Science, 310, 863–866. https://drive.google.com/file/d/1ch3LJKYzuDNnnA_QeQANE-N4QTHBoRem/view?usp=sharing

2004

Crick, F., Koch, C., Kreiman, G., & Fried, I. (2004). Consciousness and neurosurgery. Neurosurgery, 55(2), 273–281; discussion 281-282. https://drive.google.com/file/d/1WXHLq7vkWVAjiep4a975_m0uwJ1CTnP5/view?usp=sharing
Su, A. I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K. A., Block, D., Zhang, J., Soden, R., Hayakawa, M., Kreiman, G., Cooke, M. P., Walker, J. R., & Hogenesch, J. B. (2004). A gene atlas of the mouse and human protein-encoding transcriptomes. Proceedings of the National Academy of Sciences of the United States of America, 101(16), 6062–6067. https://drive.google.com/file/d/1h2jnRXXZ1N9PjRxjn3ccw7DIq5kiWzjk/view?usp=sharing
Kreiman, G. (2004). Identification of sparsely distributed clusters of cis-regulatory elements in sets of co-expressed genes. Nucleic Acids Research, 32(9), 2889–2900. https://drive.google.com/file/d/19ZgYqjD24ayz65dwxrSyVK7vETvxPj_m/view?usp=sharing
Kreiman, G. (2004). Neural coding: computational and biophisical perspectives. Physics of Life Reviews, 2, 71–102. https://drive.google.com/file/d/1VLUDAmcAFBHsaoYFCfaZ16CqIDOjvwSM/view?usp=sharing
Yeo, G., Holste, D., Kreiman, G., & Burge, C. B. (2004). Variation in alternative splicing across human tissues. Genome Biology, 5(10), R74. https://drive.google.com/file/d/1DEAcBlU0DCEF6cARx8TrVZWlYLIrqX4z/view?usp=sharing

2002

Kreiman, G., Fried, I., & Koch, C. (2002). Single-neuron correlates of subjective vision in the human medial temporal lobe. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 8378–8383. https://drive.google.com/file/d/1iakO4lxWz9C6LqiOJtWo3RoPEUbIJF3u/view?usp=sharing
Krahe, R., Kreiman, G., Gabbiani, F., Koch, C., & Metzner, W. (2002). Stimulus encoding and feature extraction by multiple pyramidal cells in the hindbrain of weakly electric fish. Journal of Neuroscience, 22(6), 2374–2382. https://drive.google.com/file/d/1HmijUZp7r_dsSQ_chEFOxsIG7ym1iRJ8/view?usp=sharing
Rees, G., Kreiman, G., & Koch, C. (2002). Neural correlates of consciousness in humans. Nature Reviews Neuroscience, 3, 261–270. https://drive.google.com/file/d/1DrO4QqZrfP4_Y4-FRDKuWsSWyjHYstTn/view?usp=sharing

2001

Kreiman, Gabriel. (2001). Moveo ergo sum. BioEssays, 23, 662. https://drive.google.com/file/d/1eIZcgWwRxQSY4jSpwgMOzwOA2f8wpBMh/view?usp=sharing
Zirlinger, M., Kreiman, G., & Anderson, D. (2001). Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid sub-nuclei. PNAS, 98(9), 5270–5275. https://drive.google.com/file/d/1XoMGp0F8R_CjJ-xiFmcyvJc8cbdusYDj/view?usp=sharing

2000

Kreiman, G., Krahe, R., Metzner, W., Koch, C., & Gabbiani, F. (2000). Robustness and variability of neuronal coding by amplitude sensitive Afferents in the weakly electric fish Eigenmannia. Journal of Neurophysiology, 84(1), 189–204. https://drive.google.com/file/d/1ZUY3SmoXg3jOR_vn4iiZ8flwXcn2oxUS/view?usp=sharing
Kreiman, G., Koch, C., & Fried, I. (2000). Category-specific visual responses of single neurons in the human medial temporal lobe. Nature Neuroscience, 3(9), 946–953. https://drive.google.com/file/d/1OrcqlyF1qw-8OYcMsWAbfgBXGj-teep7/view?usp=sharing
Kreiman, G., Koch, C., & Fried, I. (2000). Imagery neurons in the human brain. Nature, 408, 357–361. https://drive.google.com/file/d/1gze5zwvfefOBWUanS4HC8OjGnh4VMmxr/view?usp=sharing

1999

Ouyang, Y., Rosenstein, A. J., Kreiman, G., Kantor, D. B., Schuman, E. M., & Kennedy, M. B. (n.d.). Tetanic Stimulation increases both autophosphorylation and synthesis of CAMKII in area CA1 of hippocampal slices in 5 minutes. Annual Meeting of the Society for Neuroscience, 24, 1072. https://drive.google.com/file/d/1dQoBvaf_W–xkCsDt4c7gbkQY69X1RgD/view?usp=sharing

1996

Iñón de Iannino, N., Briones, G., Kreiman, G., & Ugalde, R. (1996). Characterization of the biosynthesis of beta(1-2) cyclic glucan in R. Fredii. Beta(1-2) glucan has no apparent role in nodule invasion of Mc Call and Peking soybean cultivars. Cellular and Molecular Biology (Noisy-Le-Grand, France), 42(5), 617–629. https://drive.google.com/file/d/1igwIl9Bd87L-J5D55AG8avILX_VqQ9S2/view?usp=sharing

Google Scholar Kreiman

Click here

Looking for code and data for the above publications?

Click here