List of publications

Jacquot, V., Ying, Z., & Kreiman, G. (2020). Can Deep Learning Recognize Subtle Human Activities? ArXiv:2003.13852 [Cs]. Retrieved from
Zhang, M., Tseng, C., & Kreiman, G. (2020). Putting visual object recognition in context. ArXiv:1911.07349 [Cs, Eess]. Retrieved from Download
Kreiman, G., & Serre, T. (2020). Beyond the feedforward sweep: feedback computations in the visual cortex. Annals of the New York Academy of Sciences, 1464(1), 222–241. Download
Casper, S., Boix, X., D’Amario, V., Guo, L., Schrimpf, M., Vinken, K., & Kreiman, G. (2019). Removable and/or Repeated Units Emerge in Overparametrized Deep Neural Networks. ArXiv:1912.04783 [Cs, Stat]. Retrieved from
Madhavan, R., Bansal, A. K., Madsen, J. R., Golby, A. J., Tierney, T. S., Eskandar, E. N., … Kreiman, G. (2019). Neural Interactions Underlying Visuomotor Associations in the Human Brain. Cerebral Cortex (New York, N.Y.: 1991), 29(11), 4551–4567.
Zhang, M., Tseng, C., Montejo, K., Kwon, J., & Kreiman, G. (2019). Lift-the-flap: what, where and when for context reasoning. ArXiv:1902.00163 [Cs]. Retrieved from
O’Connell, T. P., Chun, M. M., & Kreiman, G. (2019). Zero-shot neural decoding of visual categories without prior exemplars. BioRxiv, 700344.
Vinken, K., Boix, X., & Kreiman, G. (2019). Incorporating neuronal fatigue in deep neural networks captures dynamics of adaptation in neurophysiology and perception (preprint). Neuroscience. Download
Xiao, W., & Kreiman, G. (2019). Gradient-free activation maximization for identifying effective stimuli. ArXiv:1905.00378 [Cs, q-Bio]. Retrieved from Download
Kreiman, G. (2019). It’s a small dimensional world after all: Comment on “The unreasonable effectiveness of small neural ensembles in high-dimensional brain” by Alexander N. Gorban et al. Physics of Life Reviews, 29, 96–97.
Ponce, C. R., Xiao, W., Schade, P. F., Hartmann, T. S., Kreiman, G., & Livingstone, M. S. (2019). Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences. Cell, 177(4), 999-1009.e10. Download
Kreiman, Gabriel. (2019). What do neurons really want? The role of semantics in cortical representations. In Psychology of Learning and Motivation (Kara D. Federmeier, Diane M. Beck, Vol. 70). Elsevier.
Xiao, W., Chen, H., Liao, Q., & Poggio, T. (2018). Biologically-plausible learning algorithms can scale to large datasets. ArXiv:1811.03567 [Cs, Stat]. Retrieved from Download
Zhang, M., Feng, J., Lim, J. H., Zhao, Q., & Kreiman, G. (2018). What am I searching for? ArXiv:1807.11926 [Cs]. Retrieved from Download
Wu, K., Wu, E., & Kreiman, G. (2018). Learning Scene Gist with Convolutional Neural Networks to Improve Object Recognition. ArXiv:1803.01967 [Cs]. Retrieved from Download
Lotter, W., Kreiman, G., & Cox, D. (2018). A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception. ArXiv:1805.10734 [Cs, q-Bio]. Retrieved from Download
Misra, P., Marconi, A., Peterson, M., & Kreiman, G. (2018). Minimal memory for details in real life events. Scientific Reports, 8(1), 16701. Download
Isik, L., Singer, J., Madsen, J. R., Kanwisher, N., & Kreiman, G. (2018). What is changing when: Decoding visual information in movies from human intracranial recordings. NeuroImage, 180(Pt A), 147–159. Download
Zhang, M., Feng, J., Ma, K. T., Lim, J. H., Zhao, Q., & Kreiman, G. (2018). Finding any Waldo with zero-shot invariant and efficient visual search. Nature Communications, 9(1), 3730. Download
Tang, H., Schrimpf, M., Lotter, W., Moerman, C., Paredes, A., Ortega Caro, J., … Kreiman, G. (2018). Recurrent computations for visual pattern completion. Proceedings of the National Academy of Sciences of the United States of America, 115(35), 8835–8840. Download
Palepu, A., Premanathan, S., Azhar, F., Vendrame, M., Loddenkemper, T., Reinsberger, C., … Anderson, W. S. (2018). Automating Interictal Spike Detection: Revisiting A Simple Threshold Rule. Conference Proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2018, 299–302.
Cheney, N., Schrimpf, M., & Kreiman, G. (2017). On the Robustness of Convolutional Neural Networks to Internal Architecture and Weight Perturbations. ArXiv:1703.08245 [Cs]. Retrieved from Download
Lotter, W., Kreiman, G., & Cox, D. (2017). Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning. ArXiv:1605.08104 [Cs, q-Bio]. Retrieved from Download
Kreiman, G. (2017). A null model for cortical representations with grandmothers galore. Language, Cognition and Neuroscience, 32(3), 274–285. Download
Tang, H., Singer, J., Ison, M. J., Pivazyan, G., Romaine, M., Frias, R., … Kreiman, G. (2016). Predicting episodic memory formation for movie events. Scientific Reports, 6, 30175. Download
Gómez-Laberge, C., Smolyanskaya, A., Nassi, J. J., Kreiman, G., & Born, R. T. (2016). Bottom-Up and Top-Down Input Augment the Variability of Cortical Neurons. Neuron, 91(3), 540–547. Download
Tang, H., Yu, H.-Y., Chou, C.-C., Crone, N. E., Madsen, J. R., Anderson, W. S., & Kreiman, G. (2016). Cascade of neural processing orchestrates cognitive control in human frontal cortex. ELife, 5. Download
Lotter, W., Kreiman, G., & Cox, D. (2016). Unsupervised Learning of Visual Structure using Predictive Generative Networks. ArXiv:1511.06380 [Cs, q-Bio]. Retrieved from Download
Miconi, T., Groomes, L., & Kreiman, G. (2016). There’s Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task. Cerebral Cortex (New York, N.Y.: 1991), 26(7), 3064–3082. Download
Tang, S., Hemberg, M., Cansizoglu, E., Belin, S., Kosik, K., Kreiman, G., … Steen, J. (2016). f-divergence cutoff index to simultaneously identify differential expression in the integrated transcriptome and proteome. Nucleic Acids Research, 44(10), e97. Download
Hanlin Tang, & Gabriel Kreiman. (2016). Recognition of Occluded Objects. In Computational and cognitive neuroscience of vision. New York, NY: Springer Berlin Heidelberg.
Singer, J. M., Madsen, J. R., Anderson, W. S., & Kreiman, G. (2015). Sensitivity to timing and order in human visual cortex. Journal of Neurophysiology, 113(5), 1656–1669. Download
Kim, T.-K., Hemberg, M., & Gray, J. M. (2015). Enhancer RNAs: a class of long noncoding RNAs synthesized at enhancers. Cold Spring Harbor Perspectives in Biology, 7(1), a018622. Download
Prabakaran, S., Hemberg, M., Chauhan, R., Winter, D., Tweedie-Cullen, R. Y., Dittrich, C., … Steen, J. A. (2014). Quantitative profiling of peptides from RNAs classified as noncoding. Nature Communications, 5, 5429. Download
Malik, A. N., Vierbuchen, T., Hemberg, M., Rubin, A. A., Ling, E., Couch, C. H., … Greenberg, M. E. (2014). Genome-wide identification and characterization of functional neuronal activity-dependent enhancers. Nature Neuroscience, 17(10), 1330–1339. Download
Tang, H., Buia, C., Madhavan, R., Crone, N. E., Madsen, J. R., Anderson, W. S., & Kreiman, G. (2014). Spatiotemporal dynamics underlying object completion in human ventral visual cortex. Neuron, 83(3), 736–748. Download
Pinto, A. L. R., Fernández, I. S., Peters, J. M., Manganaro, S., Singer, J. M., Vendrame, M., … Kothare, S. V. (2014). Localization of sleep spindles, k-complexes, and vertex waves with subdural electrodes in children. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 31(4), 367–374.
Singer, J. M., & Kreiman, G. (2014). Short temporal asynchrony disrupts visual object recognition. Journal of Vision, 14(5), 7. Download
Frost, B., Hemberg, M., Lewis, J., & Feany, M. B. (2014). Tau promotes neurodegeneration through global chromatin relaxation. Nature Neuroscience, 17(3), 357–366. Download
Bansal, A. K., Madhavan, R., Agam, Y., Golby, A., Madsen, J. R., & Kreiman, G. (2014). Neural dynamics underlying target detection in the human brain. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(8), 3042–3055. Download
Nassi, J. J., Gómez-Laberge, C., Kreiman, G., & Born, R. T. (2014). Corticocortical feedback increases the spatial extent of normalization. Frontiers in Systems Neuroscience, 8, 105. Download
Kreiman, Gabriel, Rutishauser, Ueli. (2014). Kreiman G, Rutishauser U, Cerf M, Fried I. (2014). The next ten years and beyond. In Single neuron studies of the human brain. Probing cognition. In Single Neuron Studies of the Human Brain. MIT Press.
Ueli Rutishauser, Moran Cerf, Gabriel Kreiman. (2014). Data analysis techniques for human microwire recordings: spike detection and sorting, decoding, relation between units and local field potentials. In Single Neuron Studies of the Human Brain. MIT Press.
Arjun Bansal. (2014). Human Single Unit Activity for Reach and Grasp Motor Prostheses. In Single Neuron Studies of the Human Brain. MIT Press.
Fried, I., Rutishauser, U., Cerf, M., & Kreiman, G. (Eds.). (2014). Single neuron studies of the human brain: probing cognition. Cambridge, Massachusetts: The MIT Press.
Madhavan, R., Millman, D., Tang, H., Crone, N. E., Lenz, F. A., Tierney, T. S., … Anderson, W. S. (2014). Decrease in gamma-band activity tracks sequence learning. Frontiers in Systems Neuroscience, 8, 222. Download
Kreiman, Gabriel. (2013). Computational Models of Visual Object Recognition. In Principles of Neural Coding. CRC Press.
Kreiman, Gabriel. (2013). Mind the quantum? Trends in Cognitive Science, 17(3), 109.
Bansal, A. K., Singer, J. M., Anderson, W. S., Golby, A., Madsen, J. R., & Kreiman, G. (2012). Temporal stability of visually selective responses in intracranial field potentials recorded from human occipital and temporal lobes. Journal of Neurophysiology, 108(11), 3073–3086. Download
Bansal, A. K., Truccolo, W., Vargas-Irwin, C. E., & Donoghue, J. P. (2012). Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials. Journal of Neurophysiology, 107(5), 1337–1355. Download

zotpress style=”harvard1″ sortby=”date” sort=”DESC” showimage=”yes” download=”yes” title=”yes”

zotpress sortby=”date” sort=”desc”